10 research outputs found

    Removal of the phase noise in the autocorrelation estimates with data windowing

    Get PDF
    13th European Signal Processing Conference, EUSIPCO 2005; Antalya; Turkey; 4 September 2005 through 8 September 2005The sinusoidal frequency estimation from short data records based on Toeplitz autocorrelation (AC) matrix estimates suffer from phase noise. This effect becomes prominent especially when additive noise vanishes becoming a nuisance, that is at high signal-to-noise ratios (SNR). Based on both analytic derivation of the AC lag terms and simulation experiments, we show that data windowing can mitigate the limitations caused by the phase noise. Thus with proper windowing, the variance of the frequency estimate is no more limited by phase noise, but it continues to decrease linearly with the SNR. The cases of the Pisarenko frequency estimator and of MUSIC, both for the single sinusoid case, are analyzed in detail

    Phase noise mitigation in the autocorrelation estimates with data windowing: The case of two close sinusoids

    Get PDF
    14th European Signal Processing Conference, EUSIPCO 2006; Florence; Italy; 4 September 2006 through 8 September 2006We address the phase noise and the superresolution problem in Toeplitz matrix-based spectral estimates. The Toeplitz autocorrelation (AC) matrix approach in spectral estimation brings in an order of magnitude computational advantage while the price paid is the phase noise that becomes effective at high signal-to-noise ratios (SNR). This noise can be mitigated with windowing the data though some concomitant loss in resolution occurs. The trade-offs between additive noise SNR, resolvability of sinusoids closer than the resolution limit, and behavior of the estimated AC lags and tone frequencies are investigated

    Benefits of averaging lateration estimates obtained using overlapped subgroups of sensor data

    Get PDF
    In this paper, we suggest averaging lateration estimates obtained using overlapped subgroups of distance measurements as opposed to obtaining a single lateration estimate from all of the measurements directly if a redundant number of measurements are available. Least squares based closed form equations are used in the lateration. In the case of Gaussian measurement noise the performances are similar in general and for some subgroup sizes marginal gains are attained. Averaging laterations method becomes especially beneficial if the lateration estimates are classified as useful or not in the presence of outlier measurements whose distributions are modeled by a mixture of Gaussians (MOG) pdf. A new modified trimmed mean robust averager helps to regain the performance loss caused by the outliers. If the measurement noise is Gaussian, large subgroup sizes are preferable. On the contrary, in robust averaging small subgroup sizes are more effective for eliminating measurements highly contaminated with MOG noise. The effect of high-variance noise was almost totally eliminated when robust averaging of estimates is applied to QR decomposition based location estimator. The performance of this estimator is just 1 cm worse in root mean square error compared to the Cramér–Rao lower bound (CRLB) on the variance both for Gaussian and MOG noise cases. Theoretical CRLBs in the case of MOG noise are derived both for time of arrival and time difference of arrival measurement data

    Removal of the phase noise in the autocorrelation estimates with data windowing

    No full text
    13th European Signal Processing Conference, EUSIPCO 2005; Antalya; Turkey; 4 September 2005 through 8 September 2005The sinusoidal frequency estimation from short data records based on Toeplitz autocorrelation (AC) matrix estimates suffer from phase noise. This effect becomes prominent especially when additive noise vanishes becoming a nuisance, that is at high signal-to-noise ratios (SNR). Based on both analytic derivation of the AC lag terms and simulation experiments, we show that data windowing can mitigate the limitations caused by the phase noise. Thus with proper windowing, the variance of the frequency estimate is no more limited by phase noise, but it continues to decrease linearly with the SNR. The cases of the Pisarenko frequency estimator and of MUSIC, both for the single sinusoid case, are analyzed in detail

    Phase dependence mitigation for autocorrelation-based frequency estimation

    No full text
    The sinusoidal frequency estimation from short data records based on Toeplitz autocorrelation (AC) matrix estimates suffer from the dependence on the initial phases of the sinusoid(s). This effect becomes prominent when the impact of additive noise vanishes, that is at high signal-to-noise ratios (SNR). Based on both analytic derivation of the AC lag terms and simulation experiments we show that data windowing can mitigate the limitations caused by the phase dependence. Thus with proper windowing, the variance of the frequency estimate is no more eclipsed by phase dependence, but it continues to decrease linearly with increasing SNR. The study covers both the cases of a single sinusoid and two sinusoids closely spaced in the frequency with the Pisarenko frequency estimator, MUSIC and principal component autoregressive frequency estimators. The trade-offs between the spectral broadening and the achieved minimum variance level due to the data window are analyzed in detail

    A novel acoustic indoor localization system employing CDMA

    Get PDF
    Nowadays outdoor location systems have been used extensively in all fields of human life from military applications to daily life. However, these systems cannot operate in indoor applications. Hence, this paper considers a novel indoor location system that aims to locate an object within an accuracy of about 2 cm using ordinary and inexpensive off-the-shelf devices and that was designed and tested in an office room to evaluate its performance. In order to compute the distance between the transducers (speakers) and object to be localized (microphone), time-of-arrival measurements of acoustic signals consisting of Binary Phase Shift Keying modulated Gold sequences are performed. This DS-CDMA scheme assures accurate distance measurements and provides immunity to noise and interference. Two methods have been proposed for location estimation. The first method takes the average of four location estimates obtained by trilateration technique. In the second method, only a single robust position estimate is obtained using three distances while the least reliable fourth distance measurement is not taken into account. The system's performance is evaluated at positions from two height levels using system parameters determined by preliminary experiments. The precision distributions in the work area and the precision versus accuracy plots depict the system performance. The proposed system provides location estimates of better than 2 cm accuracy with 99% precision

    Bayesian estimation of polynomial moving average models with unknown degree of nonlinearity

    Get PDF
    24th European Signal Processing Conference, EUSIPCO 2016; Hotel Hilton BudapestBudapest; Hungary; 28 August 2016 through 2 September 2016Various real world phenomena such as optical communication channels, power amplifiers and movement of sea vessels exhibit nonlinear characteristics. The nonlinearity degree of such systems is assumed to be known as a general intention. In this paper, we contribute to the literature with a Bayesian estimation method based on reversible jump Markov chain Monte Carlo (RJMCMC) for polynomial moving average (PMA) models. Our use of RJMCMC is novel and unique in the way of estimating both model memory and the nonlinearity degree. This offers greater flexibility to characterize the models which reflect different nonlinear characters of the measured data. In this study, we aim to demonstrate the potentials of RJMCMC in the identification for PMA models due to its potential of exploring nonlinear spaces of different degrees by sampling

    One-day ahead wind speed/power prediction based on polynomial autoregressive model

    Get PDF
    Wind has been one of the popular renewable energy generation methods in the last decades. Foreknowledge of power to be generated from wind is crucial especially for planning and storing the power. It is evident in various experimental data that wind speed time series has non-linear characteristics. It has been reported in the literature that nonlinear prediction methods such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) perform better than linear autoregressive (AR) and AR moving average models. Polynomial AR (PAR) models, despite being non-linear, are simpler to implement when compared with other non-linear AR models due to their linear-in-the-parameters property. In this study, a PAR model is used for one-day ahead wind speed prediction by using the past hourly average wind speed measurements of Ceşme and Bandon and performance comparison studies between PAR and ANN-ANFIS models are performed. In addition, wind power data which was published for Global Energy Forecasting Competition 2012 has been used to make power predictions. Despite having lower number of model parameters, PAR models outperform all other models for both of the locations in speed predictions as well as in power predictions when the prediction horizon is longer than 12 h

    Beyond trans-dimensional RJMCMC with a case study in impulsive data modeling

    Get PDF
    Reversible jump Markov chain Monte Carlo (RJMCMC) is a Bayesian model estimation method, which has been generally used for trans-dimensional sampling and model order selection studies in the literature. In this study, we draw attention to unexplored potentials of RJMCMC beyond trans-dimensional sampling. the proposed usage, which we call trans-space RJMCMC exploits the original formulation to explore spaces of different classes or structures. This provides flexibility in using different types of candidate classes in the combined model space such as spaces of linear and nonlinear models or of various distribution families. As an application, we looked into a special case of trans-space sampling, namely trans-distributional RJMCMC in impulsive data modeling. In many areas such as seismology, radar, image, using Gaussian models is a common practice due to analytical ease. However, many noise processes do not follow a Gaussian character and generally exhibit events too impulsive to be successfully described by the Gaussian model. We test the proposed usage of RJMCMC to choose between various impulsive distribution families to model both synthetically generated noise processes and real-life measurements on power line communications impulsive noises and 2-D discrete wavelet transform coefficients.TUBITAK; College of Natural Resources, University of California Berkele
    corecore